
The Toymakers @ tymkrs.com
Questions? Please contact us:

feedback@tymkrs.com

DATASHEET

MIDI Out Me
Microcontroller to MIDI Kit

The MIDI Out Me kit allows you
to command and control MIDI
devices over a standard MIDI

cable!

 Kit Type: Through-hole soldering
 Assembly instructions: In datasheet
 Function: Microcontroller to MIDI Device kit
 Uses 3 pins on the MCU to send outgoing MIDI signals
 Designed with MIDI specifications

KIT CONTENTS

Contents of the Midi Out Me Kit:

 Midi Out Me printed circuit board (25.5 x 24.23 x 1.60mm)
 4 – 1x2 male headers
 1 – 1x3 female header
 Electrical Components

Electrical Components:

Reference Quantity Type Value

R1 1 Resistor, 1/4W 220 ohm

SDS50J 1 Female MIDI Jack ---

Recommended Operating Conditions

Parameter Ratings Unit

Supply Voltage 4.5 – 5.5 V

Operating Temperature -40 to +85 ºC

The MIDI Out Me circuit is built to MIDI specifications.

Mounting Holes:

Tools and material required for assembly (not included with the kit):

 Soldering iron
 Solder
 Wire clippers

User provided items required for intended function:

 MIDI Cable
 MIDI device to control

Additional physical/electrical specifications:

 Printed Circuit Board size: 1.00 x 0.95 x 0.063" (25.5 x 24.23 x 1.60mm)
 PCB thickness: 0.063" (1.60mm), not including any components
 PCB thickness: 0.945" (24mm), max height with MIDI jack
 Mounting holes: 4 holes provided. See drawings for locations and size.
 Breadboard headers are not connected to the circuit electrically – they are for stability only.

Additional Pictures:

Assembled PCB
on breadboard

Assembly Instructions

Build Notes:

 Method of use: The connections run from the microcontroller to the Midi Out Me. The Midi
Out Me is connected to power, ground, and a serial data pin on Propeller (or other MCU).
MIDI jack is then connected to the MIDI device of choice through a MIDI Cable.

Step 1: Put in the components

R1: 220 ohm resistor

You can bend the leads before putting it
in the PCB. Polarity does not matter.

MIDI Jack

There's only one way to put the jack in
– it will face outwards so you can plug

the MIDI cable in!

Breadboard Headers

These are not electrically connected to
the circuit. They are also breadboard

friendly!

Microcontroller Header

This is a 1x3 female header that
allows for the controlling microcontroller
to interface with the MIDI devices it is

controlling.

Step 2: Clip the extra leads!

I use 60/40 0.38mm gauge solder for these pads. But also have 1.3mm gauge solder for the larger
solder pads. Using nibbers or nail clippers, trim the extra leads off of the electrical components!

Example Code

The following code is thanks to a fellow friend and maker: @chasxmd at http://iradan.com

Can be found: http://pastebin.com/i8v8K3kB This code was written for a 16-bit dsPIC. It is just a
bit of sample code which sends the same command over and over. It's a Control Change Channel
1, Controller 17, Value 104.

/*
 * File: main.c
 * Author: Charles Ihler @chaxmd
 * http://iradan.com
 *
 * Device: dsPIC33FJ16GS402
 *
 * Project: Test MIDI Out
 *
 * Blink an LED RB15 for confirmation of OSC speed.
 *
 * Created on March 7, 2015, 8:39 PM
 */

 #define FFRC 7372800ULL // FRC oscillator frequency, Hz
 #define FOSC 80000000ULL // Desired system clock frequency, Hz
 #define FCY (FOSC/2)
 #define BAUDRATE 31250
 #define BRGVAL ((FCY/BAUDRATE)/16)-1

#include <p33Fxxxx.h>
#include <stdio.h>
#include <stdlib.h>
#include <libpic30.h>
#include <pps.h>

 _FOSCSEL(FNOSC_FRCPLL) //set clock for internal OSC with PLL
 _FOSC(OSCIOFNC_OFF & POSCMD_NONE) //no clock output, external OSC disabled
 _FWDT(FWDTEN_OFF) //disable the watchdog timer
 _FICD(JTAGEN_OFF & ICS_PGD1); //disable JTAG, enable debugging on PGx1 pins
/*
 *
 */

void init_UART(void) {

 U1MODEbits.STSEL = 0; // 1-Stop bit
 U1MODEbits.PDSEL = 0; // No Parity, 8-Data bits
 U1MODEbits.ABAUD = 0; // Auto-Baud disabled
 U1MODEbits.BRGH = 0; // Standard-Speed mode
 U1BRG = BRGVAL; // Baud Rate setting
// U1STAbits.UTXISEL0 = 0; // Interrupt after one TX character is transmitted
// U1STAbits.UTXISEL1 = 0;
// IEC0bits.U1TXIE = 1; // Enable UART TX interrupt
 U1MODEbits.UARTEN = 1; // Enable UART
 U1STAbits.UTXEN = 1; // Enable UART TX

//for interrupt use..
//void __attribute__((__interrupt__)) _U1TXInterrupt(void)
//{
//IFS0bits.U1TXIF = 0; // Clear TX Interrupt flag
//U1TXREG = 'a'; // Transmit one character
//}

}

void blink(void){

 PORTBbits.RB15 = 1; //on
 __delay_ms(100);
 PORTBbits.RB15 = 0; //off
 __delay_ms(100);
}

void init_PPS (void) {

http://pastebin.com/i8v8K3kB
http://iradan.com/

 //Assign PPS Ports (UART)
 PPSUnLock;
 iPPSInput(IN_FN_PPS_U1RX, IN_PIN_PPS_RP8);
 iPPSOutput(OUT_PIN_PPS_RP9, OUT_FN_PPS_U1TX);
 PPSLock;

}

int main(int argc, char** argv) {

 // setup internal clock for 80MHz/40MIPS
 // 7.37/2=3.685*43=158.455/2=79.2275
 CLKDIVbits.PLLPRE=0; // PLLPRE (N2) 0=/2
 PLLFBD=41; // pll multiplier (M) = +2
 CLKDIVbits.PLLPOST=0; // PLLPOST (N1) 0=/2
 while(!OSCCONbits.LOCK); // wait for PLL ready

 ADPCFG = 0xFFFF; //kill all analog Pins, digital only.
 ODCBbits.ODCB15 = 0; //normal output
 ODCBbits.ODCB12 = 0;
 TRISBbits.TRISB15 = 0; //output
 TRISBbits.TRISB12 = 0; //output

 init_PPS();
 init_UART();

 __delay_ms(200);

 U1TXREG = 'a'; // Transmit one character

 while(1) {
 blink();
 //Send a Test MIDI Output
 U1TXREG = 0xB1; //Control Change Channel 1
 U1TXREG = 0x11; //Controller 0x11 (17)
 U1TXREG = 0x68; //Value 0x68 (104)
 }

 return (EXIT_SUCCESS);
}

